поиск 
 
 
 
 
 
 Белые страницы однополчан
 Ищу тебя
 Список погибших 1941-1945
 Солдатские медальоны 1941-45
 
 
 
 
 
 
 История Отечества
Русско-турецкая война
Русско-японская война
Первая мировая война
Гражданская война
Вторая мировая война
Необъявленные войны СССР
Война в Афганистане
Война в Чечне
Грузино-российский конфликт
Осетино-ингушский конфликт
 
 
 
 Великие битвы
 Аллея Славы
 Великие полководцы
 
 
 
 
 
 
 Знаменательные даты
 Фронтовые письма
 Истории очевидцев
 Военные потери в войнах XX в.
 Города-герои
 
 
 
 
 
 
 Военная геральдика
Флаги РСФСР, 1918-1922
Знаки СССР
Ордена СССР
Медали СССР
Юбилейные медали СССР
Флаги СССР
Знаки отличия РФ
Ордена РФ
Медали РФ
Флаги РФ
 Организации
 Законодательные документы
 Военные песни
 Энциклопедия военной техники
 Военная проза и поэзия
 Кинофильмы
 


 
 
Наши проекты
Мировые новости Сайты для компаний Служба рассылки Игровой сервер Открытки любимым
Тесты
 
 



 



Russian Information Network
 
 

Квантовая память может работать при комнатной температуре

<<назад

Сотрудники кафедры физики Оксфордского университета продемонстрировали квантовую память, которая может работать при комнатной температуре.

Предполагается, что такая память будет использоваться в повторителях, связывающих между собой отрезки сетей квантовой фотонной связи. На малых расстояниях фотоны, слабо взаимодействующие с окружающей средой, переносят квантовую информацию без особых проблем, но в интерконтинентальных масштабах обойтись без повторителей невозможно, поскольку с увеличением длины пройденного фотоном пути вероятность того, что его исходное состояние разрушится, быстро возрастает. Идеальная квантовая память должна работать в широком диапазоне длин волн, длительное время сохранять состояние пришедшего фотона и иметь достаточно простую и надёжную конструкцию.

Известные образцы памяти, построенные на базе ионов в кристалле или захваченных в ловушку "облаков" атомов, не подходят для применения на практике. Основная проблема заключается в том, что эти схемы требуют охлаждения до нескольких кельвинов.

Новая разработка, напротив, тестировалась в обычных лабораторных условиях. Хранение слабых когерентных световых импульсов британцы реализовали с использованием атомарных паров цезия, подготавливаемых в паровой ячейке, нагретой до 62,5 ˚C. При записи в такую память управляющее поле "преобразует" фотон в коллективное возбуждение атомов цезия, а обратную операцию выполняет второй управляющий импульс, приходящий через заданное время хранения. Сигнал отделяется от импульсов записи и чтения спектрально и по поляризации.

Измеренное в опытах время хранения составляло около 1,5 мкс. Эффективность работы памяти, определяемая как отношение числа "сохранённых" и испущенных фотонов к общему числу падающих квантов света, приближалась к 30%.

Важным преимуществом своей схемы авторы называют возможность хранения информации, переносимой фотонами, частота которых изменяется в широких пределах. К её недостаткам относится принципиально неустранимый "шум" - появление фотонов на выходе при подаче сигнала считывания в том случае, если в память ничего не записывали. Одной из составляющих "шума" становится флуоресценция из возбуждённого состояния (обозначено на схеме выше как |2>), которую управляющее поле может инициировать даже при установке большой величины Δ, отделяющей частоту лазера от атомного резонанса.

  • Медаль "В память 250-летия Ленинграда"
  • Медаль "В память 850-летия Москвы"
  • Медаль "В память 1500-летия Киева"
  • Квантовая память может работать при комнатной температуре
  • Физики наблюдали квантовый эффект холла при комнатной температуре
  • Физики превратили воду в лед при комнатной температуре
  • Процессор разогнали до 500 гигагерц
  • Возможности формата Blu-ray привышены в 500 раз
  • Панов Андрей , Смоленск
  • Козлов Петр Ефимович, Киров
  • Басов Николай Геннадьевич, Липецк


  •